

СОДЕРЖАНИЕ

1.	ОБЩАЯ ИНФОРМАЦИЯ 3
1.1	Введение
1.2	ОБЩИЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ
1.3	ПРИЕМКА ОБОРУДОВАНИЯ ОТ ПРОИЗВОДИТЕЛЯ
1.4	ХРАНЕНИЕ
2.	ОПИСАНИЕ ОПТИЧЕСКОГО ПРИЕМНИКА 3
2.1	Характеристики оптического приемника ВЕТА PRO 404
2.2	Структурная схема
2.3	Прямой канал4
2.4	Контрольные точки
2.5	Питание6
2.6	Система мониторинга
2.7	Расположение модулей
2.8	Корпус7
3.	МОНТАЖ
3.1	Подготовка к монтажу
3.2	Монтаж
3.3	Заземление
3.4	Подключение сигнальных кабелей
4.	КОНФИГУРАЦИЯ
4.1	Конфигурация приемника8
4.2	Настройка
5.	ТЕХНИЧЕСКИЕ ДАННЫЕ ОПТИЧЕСКОГО ПРИЕМНИКА ВЕТА PRO 5010

ПРИЛОЖЕНИЕ 1 ПАНЕЛЬ УПРАВЛЕНИЯ (КОНФИГУРАЦИЯ И НАСТРОЙКА	
ОПТИЧЕСКОГО ПРИЕМНИКА ВЕТА PRO 50)	111
ПРИЛОЖЕНИЕ 2 СИСТЕМА МОНИТОРИНГА	114

www.vector.com.pl

ПРЕДВАРИТЕЛЬНОЕ ОПИСАНИЕ ОПТИЧЕСКОГО ПРИЕМНИКА ВЕТА PRO 50

1. Общая информация

1.1 Введение

Эта инструкция содержит необходимую информацию о правилах подключения, настройки и эксплуатации оптического приемника BETA PRO 50, производства фирмы VECTOR.

Фирма VECTOR оставляет за собой право осуществлять технические изменения без уведомления.

В случае возниконовения каких либо вопросов, касающихся нашего изделия, просим сообщить:

VECTOR sp. z o.o. ul. Krzemowa 6 81-577 Gdynia tel: +48 58 / 77-17-000 fax: +48 58 / 77-17-100 e-mail: vector@vector.com.pl

либо связаться с ближайшим представителем фирмы VECTOR.

1.2 Общие условия эксплуатации

Фирма VECTOR гарантирует правильную работу устройства в случае следования правилам данной инструкции, и одновременно не несёт ответственность за повреждения, вызванные нарушением рекомендаций производителя. Модификация и изменения вносимые в оборудование фирмы VECTOR, без её письменного согласия, приводят к анулированию гарантии на эти продукты.

ВНИМАНИЕ!

Перед подключением приемника необходимо внимательно прочитать инструкцию.

1.3 Приемка оборудования от производителя

Перед отправкой каждое устройство проверяется и упаковывается. Однако во время транспортировки могут возникнуть повреждения, поэтому потребитель должен произвести осмотр оборудования перед установкой. Если возможно, просим сохранять оригинальную упаковку, в случае необходимости отправки устройства производителю.

Во время распаковки, необходимо обратить внимание на повреждения, которые могли возникнуть из-за неправильной транспортировки.

В случае возникновения проблем во время приемки, или в случае необходимости отправки устройства назад, просим связаться с фирмой VECTOR или её представителем.

1.4 Хранение

Приемники BETA PRO 50 могут храниться в течение 18 месяцев от даты производства, без ухудшения параметров. Стандартные атмосферные условия для хранения соответствуют нормам IEC 68.1: Температура $15 \div 35^{\circ}$ C, влажность $25 \div 70\%$, давление $850 \div 1050$ hPa.

2. Описание оптического приемника

2.1 Характеристики оптического приемника ВЕТА PRO 50

- 1 активный выход PD GaAs, 2 выходных порта
- Электронная регулировка
- Индикация уровня входной оптической мощности
- Индикация уровня выходного сигнала
- Опциональный транспондер управления (SNMP)
- Резервирование прямого канала
- АРУ и система термокомпенсации
- Наличие интерфейса RS232

Оптические приемники BETA PRO 50 соответствуют требованиям норм CENELEC EN 50083 и гарантируют электромагнитную совместимость.

2.2 Структурная схема

Рис. 1. Структурная схема оптического приемника BETA PRO 50

2.3 Прямой канал

В оптическом узле BETA PRO 50 принимаемый оптический сигнал в прямом канале преобразовывается в РЧ сигнал, затем усиливается и передается далее на два выходных порта.

2.3.1 Модуль оптического приемника

Оптический входной сигнал принимается с помощью модуля оптического приёмника, выполненного на основе малошумящих входных каскадов. Такая конструкция позволяет добиться высокого соотношения сигнал/шум CNR даже при работе с низкими входными уровнями оптического сигнала на входе.

Приёмник работает в диапазоне входного оптического сигнала от -6,5 дБм до + 2 дБм.

В оптическом узле BETA PRO 50 установлены два модуля оптических приёмников. Один из них выполняет роль основного, второй - резервного. Выбор режима работы приёмников можно осуществлять при помощи панели управления, в сервисном меню. Система автоматики осуществляет измерение входной мощности оптического сигнала на обоих приёмниках одновременно, и принимает решение о переключении на резервный, когда входная мощность на основном приёмнике будет меньше либо больше установленных порогов. Более подробное описание работы в Приложении 1 "Панель управления (конфигурация и настройка оптического приемника BETA PRO 50)"

2.3.2 Регулировка уровня входного оптического сигнала

Оптический входной сигнал преобразовывается модулем оптического приёмника в сигнал РЧ, а затем поступает на аттенюатор, для достижения желаемого уровня. Регулировка затухания (усиления) осуществляется электронным способом, при помощи панели управления.

2.3.3 Автоматическая регулировка усиления (АРУ)

АРУ делает возможной автоматическую регулировку усиления. Модуль отслеживает уровень входной оптической мощности, и в зависимости от ее величины изменяет усиление системы, стабилизируя уровень РЧ сигнала на выходе приемника.

Возможны два типа регулировки:

Ручной - АРУ выключено, возможна регулировка затухания в пределах 0...8 дБ, с шагом 2 дБ.

Автоматический - система АРУ автоматически регулирует величину аттенюатора, на основании изменений входной оптической мощности, в пределах ее диапазона -5...+2 дБм.

Дополнительно, в приемнике реализована система термокомпенсации, которая позволяет удерживать стабильным выходной уровень сигнала при колебаниях температуры окружающей среды во всем рабочем диапазоне.

2.3.4 Межкаскадная регулировка

Межкаскадная регулировка осуществляется с помощью аттенюатора **AT 1** и эквалайзера **EQ 1**. Регулировка затухания (усиления) и наклона характеристики осуществляется электронным методом, с помощью панели управления в диапазоне (47 МГц – 862 МГц):

АТ 1 – от 0 до 20 дБ с шагом 1 дБ

EQ 1 - от 0 до 15 дБ с шагом 1 дБ

Применение межкаскадного эквалайзера позволяет увеличить уровень выходного сигнала без ухудшения интермодуляционных параметров приемника.

Дополнительно, на выходе последнего каскада усиления установлен еще один аттенюатор **ATG**, выполненный в виде фиксированного сменного модуля, с помощью которого можно внести дополнительное затухание, при необходимости получения низкого выходного уровня. Это позволяет использовать приемник в широком диапазоне выходных уровней, без использования дополнительных аттенюаторов на его выходе.

АТС - от 0 до 20 дБ с шагом 1 дБ

В стандартном режиме работы с высокими выходными уровнями, вместо аттенюатора ATG устанавливается перемычка ATG800 (установлена по умолчанию).

2.3.5 Выходы

Оптический приемник обладает одним активным выходом и двумя выходными портами. Выход 1 основной, выход 2 конфигурируется опционально, при помощи вставного модуля **ТО 8хх.** В таком случае сигнал делится на два выходных порта PORT 1 и PORT 2. Если PORT 2 не используется, необходимо установить вставку **АТ 800** (перемычка).

2.4 Контрольная точка

В прямом канале имеется направленная контрольная точка, выполненная в виде измерительного отвода F-типа (-20 дБ). Использование контрольной точки позволяет осуществлять точное измерение уровней сигналов.

ВНИМАНИЕ!

Необходимо помнить, что измеряемые параметры сигнала в контрольной точке зависят от потерь соединительного кабеля.

2.5 Питание

Оптический приемник BETA PRO 50 существует с одним вариантом питания: местное питание 220 VAC. Приемник изначально изготовлен с двухжильным электрическим шнуром и сетевой вилкой.

Конструктивное исполнение местного питания обеспечивает высокую надежность усилителя и низкую потребляемую мощность.

2.6 Система мониторинга

Оптический приемник BETA PRO 50 способен работать с системой мониторинга - он имеет возможность установки модуля NMS. Модем NMS используется опционально и может быть установлен в процессе использования оптического приемника. С его помощью можно дистанционно контролировать основные параметры и управлять различными настройками приемника. Перечень команд системы мониторинга см. в Приложении 2

2.7 Расположение узлов

Размещение модулей в прямом канале представлено на рис. 2

- 1. Оптический приемник А
- 2. Оптический приемник В
- 3. Панель управления

- 4. Модуль мониторинга
- 5. Выходная контрольная точка
- 6. Выходной разветвитель

Рис. 2. Расположение модулей

2.8 Корпус

Корпус выполняет две функции: защищает оптический приемник от влияния окружающей среды и действует как радиатор, улучшая тепловыделение. Алюминиевый корпус с большим радиатором дает возможность работать в широком диапазоне температур (-40...+ 50°С). Применение резиновой прокладки улучшает герметичность корпуса.

Корпус оптического приемника требует мало пространства и позволяет осуществлять установку как в типовых монтажных шкафах, так и в отдельностоящем исполнении. Универсальный монтажный крепеж делает возможным непосредственную установку приемника на стену. Приемник имеет два порта РЧ F-типа, два внешних оптических входа типа SC/APC, разъем с клемами для подключения внешних контактов и разъем RJ-45 для подключения к сети Ethernet. Крышка приемника крепится с помощью винтов M5.

На рис. 3 представлен вид корпуса оптического приемника BETA PRO 50.

Рис. 3. Вид корпуса оптического приемника BETA PRO 50

www.vector.com.pl

3. Монтаж

3.1 Подготовка к монтажу

Перед монтажем приемника необходимо тщательно осмотреть его корпус. Необходимо обратить внимание на возможные повреждения ребер радиатора, выходных портов и винтов крышки, а так же убедиться в целостности трех универсальных элементов крепления приемника к поверхности.

3.2 Монтаж

Перед установкой оптического приемника, необходимо прикрутить универсальные держатели к задней стенке корпуса, используя установленные там винты. Крепление приемника к стене или монтажному шкафу полагается выполнять используя винты с максимальным диаметром 6мм. Правильная установка обеспечивает необходимое охлаждение, гарантирующее работу приемника в указанном диапазоне температур.

Внимание!

Оптический приемник необходимо устанавливать в вертикальном положении, чтобы выходные порты были направлены вниз. В противном случае охлаждение приемника будет неэффективным.

При наличии свободной циркуляции воздуха, правильно установленный опический приемник достигает температуры около 35⁰С (при температуре окружающей среды 20⁰С). При такой же окружающей температуре, приемник в лежащем положении может достигнуть температуры около 50⁰С!

3.3 Заземление

Для обеспечения безопасности во время работы приемника, его следует заземлять. Для этого служит разъем, находящийся с правой стороны приемника. Заземление необходимо осуществлять при помощи медного провода сечением 4 мм².

3.4 Подключение сигнальных кабелей

Перед подключением кабельной сети, необходимо обесточить все источники питания в сети. Неиспользуемые выходы необходимо оконечить нагрузкой 75Ω. Для подключения коаксиальных кабелей ко всем портам РЧ необходимо использовать коннектор F-типа. Для оптических входов используются разъемы типа SC/APC. Система мониторинга подключается через разъем RJ45.

4. Конфигурация

4.1 Конфигурация усилителя

Перед запуском нужно убедиться в правильности установки сменных модулей. Правильно сконфигурированный приемник содержит следующие модули:

- Фиксированный аттенюатор (ATG8xx) либо перемычка (ATG800) на выходе приемника
- Выходной делитель (ТО8хх) либо перемычка (АТ800)

4.2 Настройка

Весь процесс настройки приемника выполняется при открытой крышке. После окончания процесса настройки крышку необходимо закрыть.

Настройка в оптическом узле BETA PRO 50 осуществляется согласно указанной ниже процедуре (конфигурация и настройка осуществляется автоматически с помощью панели управления расположенной на плате приемника):

- Измерьте уровень входной оптической мощности с помощью измерителя, либо проконтролируйте ее с помощью индикатора LCD оптического приемника BETA PRO 50.
- 2. На плате оптического приемника, рядом с модулями основного и резервного приемников дополнительно установлены два светодиода, позволяющие определить активный оптический приемник.
- 3. Проверьте конфигурацию работы оптических приемников (касается резервирования).
- 4. Установите режим работы системы оптической АРУ, включена/выключена.
- 5. Подключите измеритель РЧ сигнала к выходной контрольной точке ТР и проверьте, соответствует ли уровень и наклон характеристики сигнала требуемым значениям.
- 6. Измените значение усиления прямого канала с помощью аттенюатора АТ1. При необходимости получения низкого выходного уровня, можно воспользоваться дополнительным фиксированным аттенюатором АТG8xx
- 7. Измените значение наклона характеристики сигнала с помощью эквалайзера EQ1.
- 8. Проверьте уровень РЧ сигнала на выходе PORT1.
- 9. Запишите в память микропроцессора опорный уровень выходного группового сигнала.

После конфигурации и настройки оптического приемника необходимо закрыть крышку и равномерно зажать винты

5. Технические данные оптического приемника ВЕТА PRO 50

ΠΑΡΑΜΕΤΡ	ЗНАЧЕНИЕ	ПРИМЕЧАНИЕ
Длина волны [нм]	1100 ÷ 1600	
Диапазон входной оптич. мощности [дБм]	-6,5 ÷ +2	
Диапазон работы оптической АРУ	-5 ÷ +2	
Эквивалентная мощность шумов [pA/√Hz]	≤ 5,5	
Тип оптического разъема	SC/APC	
Диапазон частот [МГц]	47 ÷ 862	
Выходной уровень [дБмкВ],		EN50083-3, 42 кан. CENELEC, 9dB межк. экв., 1
CTB ≤ -60dBc	>110 (тип. 111)	выход
CSO ≤ -60dBc	>110 (тип. 111)	
Неравномерность характеристики [дБ]	± 0.75	
Возвратные потери [дБ]	≤ - 18	f≤40МГц; f>40МГц: +1.5дБ/окт.
Выходная контрольная точка [дБ]	-20 ± 1	Направленный ответвитель
Диапазон межкаскадного аттенюатора [дБ]	0 ÷ 20	Шаг 1 дБ
Диапазон межкаскадного эквалайзера [дБ]	0 ÷ 15	Шаг 1 дБ
Количество портов РЧ / тип соединителя	2/F	
Тип разъема системы мониторинга	RJ45	
Диапазон напряжения питания [В]	220±10%	~ 50 Гц
Потребляемая мощность [Вт]	<15	
Класс защиты корпуса	IP 24	
Диапазон рабочей температуры [°C]	-40 ÷ +50	
Габариты [мм]	245 x 220 x 92	
Вес [кг]	2	

Технические данные могут изменяться производителем без уведомления.

ПРИЛОЖЕНИЕ 1. ПАНЕЛЬ УПРАВЛЕНИЯ (КОНФИГУРАЦИЯ И НАСТРОЙКА ОПТИЧЕСКОГО ПРИЕМНИКА ВЕТА PRO 50)

Оптический приемник BETA PRO 50 имеет микропроцессор, который позволяет управлять регулировками элементов настройки, изменять конфигурацию приемника, а также измерять входную оптическую мощность и уровень выходного сигнала.

Обслуживание устройства осуществляется с помощью панели управления, состоящей из LED индикатора и двух пар функциональных клавиш:

Клавиши меню ◀ / ► служат для выбора отдельной опции, которая может быть проконтролирована или изменена.

Клавиши - / + служат для изменения значения элементов, которые были ранее выбраны с помощью клавиш меню ◀ / ►. Изменение значения либо конфигурации происходит автоматически, без необходимости дополнительного подтверждения.

2-ух сегментный LED индикатор – позволяет осуществлять чтение актуального значения элементов либо конфигурации. Далее, в квадратных скобках [] будет указываться соответствующее описываемому режиму, реально отображаемое значение на LED индикаторе.

С целью минимизации времени, необходимого для запуска и настройки приемника, а также упрощения его обслуживания, меню настройки поделено на два режима работы:

Рабочий режим работы [. .] – дает доступ к функциям, необходимым при текущем обслуживании оптического приемника, т.е. связанным с настройками аттенюатора и эквалайзера, и измерением входной оптической мощности.

Сервисный режим работы [SE] – дает доступ к функциям, связанным с конфигурацией устройства, таким как АРУ, выбор приемника, установка опорного уровня.

Доступ к сервисному режиму работы ограничен и возможен при одновременном нажатии и удержании в течение более 2 секунд клавиш UP/DOWN. В сервисное меню можно войти только когда индикатор LED показывает нейтральное положение рабочего режима [...]. Индикация выбранного режима работы присутствует на светодиодной линейке (последний индикатор в линейке включен при работе в сервисном меню).

Возврат от сервисного меню к стандартному наступает примерно через 2 минуты ожидания в любой позиции сервисного меню, либоо можно перейти в нейтральное положение сервисного режима [SE], и удержать нажатыми клавиши UP/DOWN более 2 сек.

Функции доступные в рабочем режиме меню

Выбор функции осуществляется с помощью клавиш меню - / + (в квадратных скобках указано отображении функции на LED дисплее):

- [rA] измерение входной оптической мощности для основного оптического приемника А.
- [rB] измерение входной оптической мощности для резервного оптического приемника В.

Диапазон измерения оптической мощности от – 9,9 дБм до + 2,9 дБм.

Индикация значения входной оптической мощности происходит по следующим правилам:

- n.N - маленькая цифра в первом положении указывает на положительное значение величины, > 0 дБм

- N.N - большая цифра в первом положении указывает на отрицательное значение величины, < 0 дБм либо 0 дБм

В случаях, когда входная мощность находится за границами диапазона, отображаются следующие значения:

Lo – означает, что оптическая мощность < - 9,9 дБм

Ні – означает, что оптическая мощность > +2,9 дБм,

- [rF] разница между актуальным в настоящее время выходным уровнем и записанным в памяти опорным уровнем выходного группового сигнала. При положительном значении разницы, отображается число с точкой в конце - [NN.], при отрицательном без точки – [NN]
 - [OL] величина реального уровня выходного группового сигнала, dBm.
- [A1] изменение значения межкаскадного аттенюатора, в диапазоне 0 20 дБ, с шагом 1 дБ.
- [E1] изменение значения межкаскадного эквалайзера, в диапазоне 0 15 дБ, с шагом 1 дБ.

Функции доступные в сервисном режиме работы:

• [OP] – выбор активного приемника.

Существует три режима работы коммутатора приемников:

- о [PA] приемник работает в режиме резервирования входов.
- о [A] оптический приемник не работает в режиме
- резервирования. Активный приемник А, приемник В выключен.
 [В] оптический приемник не работает в режиме
 - резервирования. Активный приемник В, приемник А выключен.

В режиме резервирования, переключение с основного на резервный приемник осуществляется по следующему алгоритму:

- При первоначальном включении приемника активным устанавливается приемник А.

- В процессе работы приемника осуществляется контроль входных оптических уровней на обоих входах. Если уровень на любом из входов выйдет за установленные границы, через систему мониторинга выдается аварийное сообщение (Alarm).

- В случае выхода входного оптического уровня за установленные пользователем границы на рабочем входе, система проверяет уровень сигнала на втором входе. Если он находится в допуске, то приемник переключается на работу от другого входа. Если сигнал на втором входе не в допуске, то переключение не

производится.

Установка порогов оптической мощности доступна в режиме подключения через систему мониторинга. Исходное значение порогов: нижний -4 дБм, верхний +2 дБм.

- **[AC]** выбор режима работы системы АРУ: Доступны следующие режимы работы АРУ:
 - о OFF АРУ выключено и не вносит дополнительного затухания
 - 2,4,6,8 АРУ выключено и вносит затухание соответственно с выбранным значением, дБ
 - ОN АРУ включено и работает в диапазоне оптической мощности -5...+2 дБм
- **[dS]** установка первоначальных заводских настроек (аттенюатор 10 дБ, эквалайзер 7 дБ, АРУ выкл., режим резервирования вкл.). Осуществляется путем нажатия и удержания двух кнопок UP и DOWN в течение более 2-х секунд. Подтверждается индикацией на дисплее числа [88] и переходом через короткое время в стандартный режим.
- [rE] установка опорного уровня. Существующий в настоящий момент уровень выходного группового сигнала записывается в память как опорный. Осуществляется путем нажатия и удержания двух кнопок UP и DOWN в течение более 2-х секунд. Подтверждается индикацией на дисплее числа [88] и переходом через короткое время в стандартный режим.

Таким образом в память осуществляется запись опорного уровня группового сигнала, который был на выходе приемника в момент записи. В дальнейшем, система производит отслеживание реального выходного уровня (разница между реальным и опорным уровнем отображается в режиме **[rF]**). При каждой новой записи опорного уровня старое значение автоматически стирается.

ПРИЛОЖЕНИЕ 2. СИСТЕМА МОНИТОРИНГА

В таблице 1 приведен перечень адресов (OID), контролируемых параметров оптического приемника.

Ν	OID	Variable name	Туре	Access	Descriprtion
1	1.3.6.1.2.1.1.1.0	sysDescr.0	string	R/O	МАС адрес
2	1.3.6.1.4.15591.1.5.5.1.2.1	fnOpticalReceiverPower.1	integer	R/O	Уровень оптической мощности приемника A power [dBm] = [Value]/10 [dBm]
3	1.3.6.1.4.15591.1.5.5.1.2.2	fnOpticalReceiverPower.2	integer	R/O	Уровень оптической мощности приемника B power [dBm] = [Value]/10 [dBm]
4	1.3.6.1.4.1.5591.1.5.13.1.4.0	fnOpticalReceiverABSwitchState.0	integer	R/O	Активный приемник 0 - приемник В 1- приемник А
5	1.3.6.1.4.1.5591.1.5.19.1.2.1	fnDCPowerVoltage.1	integer	R/O	Напряжение источника питания 12V [815V] Voltage=[Value]/10 [V] 105 -> 10,5V
6	1.3.6.1.4.1.5591.1.5.19.1.2.2	fnDCPowerVoltage.2	integer	R/O	Напряжение источника питания 5V Voltage=[Value]/10 [V] 45 -> 4,5V
7	1.3.6.1.4.1.5591.1.5.19.1.2.3	fnDCPowerVoltage.3	integer	R/O	Напряжение источника питания 24V Voltage=[Value]/10 [V] 235 -> 23,5V
8	1.3.6.1.4.1.11195.1.6.0	fnAmplifierTemp.0	integer	R/O	Температура приемника

9	1.3.6.1.4.1.11195.1.8.0	fnExtPortStatus.0	integer	R/O	Статус внешней сигнализации [0] - open [1] - close
10	1.3.6.1.4.1.11195.1.9.0	fnDeltaPowerRef.0	integer	R/O	Разница между опорным и реальным уровнями выходного сигнала [dB]
11	1.3.6.1.4.1.11195.1.11.0	fnTotalPower.0	integer	R/O	Величина реального выходного сигнала [dBm]
12	1.3.6.1.4.1.11195.1.28.0	fnAmpType.0	string	R/O	Тип усилителя
13	1.3.6.1.4.1.11195.1.29.0	fnAmpSerialNumber.0	string	R/O	Серийный номер усилителя
14	1.3.6.1.4.1.11195.1.30.0	fnAmpFirmwareVersion.0	integer	R/O	Версия ПО приемника
15	1.3.6.1.4.1.11195.1.31.0	fnMonFirmwareVersion.0	string	R/O	Версия ПО системы мониторинга

В таблице 2 приведен перечень адресов (OID), контролируемых и управляемых параметров оптического приемника.

Ν	OID	Variable name	Туре	Access	Descriprtion
1	1.3.6.1.2.1.1.6.0	sysLocation.0	string	R/W	Локализация устройства
2	1.3.6.1.4.1.5591.1.5.13.1.5.0	fnOpticalReceiverABSwitchSetting.0	integer	R/W	Режимы работы приемников РА - основной приемник А [3] А - рабочий приемник А [1] В - рабочий приемник В [2]
3	1.3.6.1.4.1.11195.1.1.0	fnAGCSetting.0	integer	R/W	Режимы работы АРУ OFF - [0] 2dB - [2] 4dB - [4] 6dB - [6] 8dB - [8] ON - [255]
4	1.3.6.1.4.1.11195.1.4.0	fnAttenuatorSetting.0	integer	R/W	Величина аттенюатора [dB]
5	1.3.6.1.4.1.11195.1.5.0	fnEqualizerSetting.0	integer	R/W	Величина эквалайзера [dB]
6	1.3.6.1.4.1.11195.1.10.0	fnTotalPowerRef.0	integer	R/W	Установка опорного уровня выходного сигнала [dB]
7	1.3.6.1.4.1.11195.1.32.0	fnUpdateMonFirmware.0	integer	R/W	Запуск процесса обновления ПО. NOErr(0) – отсутствие ошибок UpMon(1) – обновление ПО мониторинга UpAmp(2) – обновление ПО приемника (в v.1 нет) NoServ(3) – сервер не найден NoTrans(4) – нет передачи NoFile(5) – нет файла BootErr(6) – ошибка обновления AmpTypeErr(7) – не верный тип приемника AmpFormErr(8) – ошибка формата файла AmpCRCErr(9) – ошибка СRC AmpCItr(10) – не тов к обновл. AmpUpErr(11) – ошибка оконч. обновления AmpUpErr(12) – ошибка оконч. обновления
8	1.3.6.1.4.1.11195.1.33.1	newFirmwareName.1	string	R/W	Имя файла системы мониторинга
9	1.3.6.1.4.1.11195.1.33.2	newFirmwareName.2	string	R/W	Имя файла приемника
10	1.3.6.1.4.1.11195.1.34.0	tftpServerLocation.0	ip	R/W	TFTP server location

Пример контроля и изменения параметров устройства

Контроль параметров Запрос 1:

Snmpwalk -v 2c -c private 192.168.1.1

Ответ 1: SNMPv2-MIB::sysDescr.0 = STRING: 00-03-03-03-03 (MAC адрес) SNMPv2-MIB::sysLocation.0 = STRING: In the middle of nowhere (локализация)

3aпрос 2: snmpwalk -v 2c -c private 192.168.3.73 enterprises

Ответ 2: SCTE-HMS-FIBERNODE-MIB::fnOpticalReceiverPower.1 = INTEGER: -99 (вх.мощн.пр.A<-9.9)

www.vector.com.pl

SCTE-HMS-FIBERNODE-MIB::fnOpticalReceiverPower.2 = INTEGER: -23 (вх.мощн.пр.В=-2.3, отображение одной цифры говорит о том, что она после нуля, например -3 означает -0,3) SCTE-HMS-FIBERNODE-MIB::fnOpticalReceiverABSwitchState.0 = INTEGER: pathA(1) (акт. пр. А) SCTE-HMS-FIBERNODE-MIB::fnOpticalReceiverABSwitchSetting.0 = INTEGER: preferPathA(3) (резервирование вкл., основной А) SCTE-HMS-FIBERNODE-MIB::fnDCPowerVoltage.1 = INTEGER: 120 (напряжение 12.0 В) SCTE-HMS-FIBERNODE-MIB::fnDCPowerVoltage.2 = INTEGER: 50 (напряжение 5,0 В) SCTE-HMS-FIBERNODE-MIB::fnDCPowerVoltage.3 = INTEGER: 247 (напряжение 24,7 В) VECTOR-HFC-MIB::fnAGCSetting.0 = INTEGER: on(255) (АРУ вкл. (0 – АРУ выкл.)) VECTOR-HFC-MIB::fnAttenuatorSetting.0 = INTEGER: 0 (аттенюатор 0 дБ) VECTOR-HFC-MIB::fnEqualizerSetting.0 = INTEGER: 0 (эквалайзер 0 дб) VECTOR-HFC-MIB::fnAmplifierTemp.0 = INTEGER: 35 (температура 35℃) VECTOR-HFC-MIB::fnExtPortStatus.0 = INTEGER: open(0) (внешний контакт разомкнут) VECTOR-HFC-MIB::fnDeltaPowerRef.0 = INTEGER: 1 (разница между реальным и опорным уровнями 1 дБ) VECTOR-HFC-MIB::fnTotalPowerRef.0 = INTEGER: 2 (опорный уровень сигнала 2 дБм) VECTOR-HFC-MIB::fnTotalPower.0 = INTEGER: 3 (реальный уровень сигнала 3 дБм) VECTOR-HFC-MIB::fnAmpType.0 = "0101" (тип устройства) VECTOR-HFC-MIB::fnAmpSerialNumber.0 = "012345678978" (серийный номер устройства) VECTOR-HFC-MIB::fnAmpFirmwareVersion.0 = INTEGER: 0 (версия ПО устройства) VECTOR-HFC-MIB::fnMonFirmwareVersion.0 = STRING: "1.0.0.83" (версия ПО мониторинга) VECTOR-HFC-MIB::fnUpdateMonFirmware.0 = INTEGER: NoErr(0) (отсутствие ошибок обновл. ПО) VECTOR-HFC-MIB::newFirmwareName.1 = STRING: "I_Upload.bin" (имя ПО1) VECTOR-HFC-MIB::newFirmwareName.2 = STRING: "A Upload.bin" (имя ПО2) VECTOR-HFC-MIB::tftpServerLocation.0 = IpAddress: 192.168.1.5 (IP adpec) VECTOR-HFC-MIB::tftpServerLocation.0 = No more variables left in this MIB View (It is past the end of the MIB tree) (локализация)

Изменение параметров:

Запрос 1:

Snmpset -v 2c -c private 192.168.1.1 fnEqualizerSetting.0 i 2 (2 – значение эквалайзера которое нужно установить)

Ответ, если не произошло ошибок: VECTOR-HFC-MIB::fnEqualizerSetting.0 = INTEGER: 2

Запрос 2:

snmpset -v 2c -c private 192.168.3.73 fnEqualizerSetting.0 i 32 (32 – не верное значение эквалайзера)

Ответ, если в запросе была ошибка: Error in packet. Reason: wrongValue (The set value is illegal or unsupported in some way)

<u>Замечание:</u> Для всех контролируемых параметров будет существовать возможность ручной установки пороговых значений, при превышении которых оператору будет высылаться соответствующий Alarm, предупреждающий о возникновении проблемы.